@ MITEL. Firefly Embedded MicroController ASICs

SEMICONDUCTOR

(Incorporating the ARM7TDMI Core)

INTRODUCTION

Mitel Semiconductor has combined advanced, compact
ASIC technology with MicroController design expertise and
the ARM7TDMI processor core to produce the uniquely
versatile Firefly range of Embedded MicroController ASICs.

The ARM7TDMI from Advanced RISC Machines is a 32-bit
RISC processor, specifically developed for deeply embedded
applications, such as wireless communications, networking,
media and mass-storage. It is a member of the Mitel
Semiconductor SystemBuilder™ library of embeddable
macrofunctions.

A wide variety of Firefly Embedded MicroController cores
can be assembled by Mitel Semiconductor. In every case, an
internal multi-master bus is used to connect the ARM7TDMI
core to a suitable set of local peripherals. These peripherals
(e.g. timers, interrupt controllers, memory interfaces) are
selected from Mitel Semiconductor’s own library of fully-
verified on-chip macrofunctions.

The ASIC technology used to develop Mitel's MicroController
ASICs also allows designers to add their own logic
(implemented in a sea-of-gates) around the Firefly
MicroController core, together with on-chip RAM and ROM
blocks. The amount of RAM, ROM, customer logic and I/O
determines the size of array base used for each design.

Standard ASIC Die sizes are used whenever possible, to
reduce tooling charges and prototype lead times.

This document presents the MF1 as an example of a Firefly
Core, but others are also available; new peripheral functions
and new MicroController cores can readily be created in
response to specific customer needs.

[EHE]

Customer Logic
(Sea of Gates)

MicroController Cell.

sl fu) g prppuy iy

I

) U B S D L e
RN RN ERERAE]

Example Firefly MicroController ASIC

DS4874 - 1.0 September 1998
FEATURES
B Uses the industry standard ARM7TDMI processor core:
- Small size
- Low power consumption
- High performance
- High code density
- 16- and 32-bit instruction sets
B Available in both Embedded Array and Standard Cell
technologies
B Available on two Mitel CMOS processes:
- 0.6um (90K series) - for 5V or 3.3V operation
- 0.35um (200 series) - 2V and 3.3V operation

B Supported by Mitel's full SystemBuilder™ capability:
- Extensive library of proven, re-usable macros

- Simulation Models and Test Vectors supplied for
MicroController cores and all other macros

- Documented Design Flows for Industry Standard
CAE tools, including "How-to’ Development Guides

- World-wide Design Centre support

- Dedicated Software and Hardware Applications
Engineering support

B Software Interface Function (SIF) Library:

- Supports all MicroController Peripherals and many
other SystemBuilder™ macros

- Facilitates all low-level initialisation and control tasks

BENEFITS

B Mitel Semiconductor’'s MicroController expertise enables:
- High levels of integration
- Fast time-to-market
- Right-first-time

B SystemBuilder™ methodology and efficient ASIC
technologies lead to effective solutions for volume
applications, where cost, performance and power
consumption are all critical

B Low implementation risk through the re-use of proven
macrofunctions

B Embedded Array ASICs enable short prototype cycle
times. By fixing the embedded functions and pin-out early
in the design, the base wafers can be manufactured in
parallel with verification and fine-tuning of the design, so
only the metal layers remain to be fabricated after design
sign-off. This gives a prototype cycle time equivalent to a
Gate Array, and the ability to create upgrades or variants
rapidly, by using existing base wafer stocks.

B Standard Cell ASICs offer the opportunity to fine-tune the
chip size for the precise application. This minimises cost
and power dissipation, and maximises performance, but
requires a full Standard Cell prototype cycle time. A Sea-
of Gates block can be designed in, to allow rapid metal-
layer-only modification, using existing base wafer stocks.

Firefly ASIC Cores

The Firefly range of the MicroController cores combines the
widely adopted ARM7TDMI RISC processor core with Mitel
Semiconductor’s MicroController integration experience and
Embedded Array ASIC technologies to deliver
MicroController engines for customer-specific designs.

1/0 Pad Ring

Micﬁ)'?o%g?s',\glr Application Specific Logic
Core i
ARM7TDMI
Optimised -

Internal Bus ™~J

Interrupt

tController

Dual Timer/
Counter

Controller UART

ExternalBus System
Interface Services

DNA M Sea-of-Gates

Embedded

MicroController
Cell

Example Firefly MicroController ASIC

Firefly MicroController ASIC cores from Mitel Semiconductor
integrate system support functions, such as memory and
peripheral interfaces, interrupt controllers, timers, UARTs
and DMA controllers within a modular bus-based
architecture to allow the rapid development of application-
specific MicroControllers, optimised to meet performance,
size and power constraints.

Mitel's ASIC technologies allow designers to surround the
chosen Firefly core with blocks of RAM and ROM, complex
re-usable functions (e.g proven, synthesisable IPR blocks)
and their own application-specific logic. Either Embedded
Array or Standard Cell techniques may be used to develop
Firefly MicroController ASICs.

In Embedded Arrays, the gate array area consists of a dense
array of core cells, which has been designed to allow very
efficient metal interconnections, including over-cell routing,
resulting in high utilisation. The core architecture also allows
highly efficient register file RAM to be implemented.

Both dual- and single-port RAM, and ROM can be
implemented in a gate array area. This is suitable for
modest-sized memory blocks, and minimises the
engineering charge, as it requires no custom embedded
blocks.

Single- and dual-port embedded RAM and ROM blocks are
available for larger memories in both Embedded Array or
Standard Cell ASICs, and for applications which require very
fast access times.

Mitel's Array and Standard Cell Libraries also offer Phase
Locked Loops, Oscillators and a range of analogue /O
functions, including ADCs, DACs, Power-on Reset cells and
Reference cells, any of which can be included in any
MicroController ASIC design.

Currently, designs of up to 3 million equivalent gates
complexity are being undertaken on Mitel's 0.35um CMOS
technology.

A Hierarchy of Benefits

At the heart of the current range of Firefly MicroController
ASICs is the ARM7TDMI, the world's most successful 32-bit
Embedded RISC Processor Core:

ARM7TDMI Microprocessor Core E

Small area

Low power

High code density

To extend the capabilities, and to simplify the use of the
ARM7TDMI Core, Mitel has developed a set of versatile
peripherals, connected to the processor core by an internal
multi-master bus, which it uses to build Firefly Embedded
MicroController Cores:

The Firefly MF1 ARM7TDMI
MicroController Core
Proven dESign Interrupt Dual Timer/
Highly integrated Controller Counter
I
Well documented DMA
UART
Controller
External Bus System
Interface Services
§

To tailor Firefly ASICs for their precise needs, Customers
can finally add their own logic, optionally with other custom
blocks from Mitel, such as compact ROM/RAM, to produce
their ideal Embedded MicroController ASICs.

The customer can gain confidence from the extensive re-use
of well-proven functions, giving fast time-to-market and a
high probability of first time success:

Application Specific Logic

Firefly MicroController [
ASIC 1 ARM7TDMI
Customer specific 5 -
H Interrupt DualTimer/
Fast time to market] Controller Counter
H DMA
Low cost u | Controller | U I
] ExternalBus System
] Interface Services

Mitel Semiconductor Firefly ASIC Design Hierarchy

Example: Mitel Firefly MF1 MicroController Core

ARM7TDMI*
Interrupt Dual Timer/
Controller 1N Counter
DMA
Controller* B UART

s

External Bus System
Interface Services Module*

(Note: Asterisks denote functions with Bus Master capability)

MicroController Core Block Diagram

Shown above is the simplest Firefly MicroController core, the
MF1. This example incorporates:

B The ARM7TDMI processor core

B A Serial I/O port (UART)

A programmable External Bus (memory, etc.) interface
A programmable interrupt controller

Two dual 32-bit timer/counters

A Direct Memory Access (DMA) controller providing 2 fly-
by channels or 1 memory-memory channel

B A test/diagnostic interface (System Services Module)

Architectural Overview

Mitel's Firefly MicroController cores are designed around a
modular 32-bit bus architecture developed by Mitel in
collaboration with Advanced RISC Machines. This internal,
multi-master bus architecture has been developed to
facilitate fully-testable, reliable and debuggable integrated
MicroController products.

A range of embedded peripheral macrocells, a few of which
are listed in the example above, has been designed by Mitel.
Each macrocell must comply with the bus interface
specification and operate independently of all other
macrocells. All peripherals are fully testable through the
internal bus.

To facilitate ease-of-use, a library of Software Interface
Functions (SIFs) is supplied, which greatly improves
programmer productivity in setting up and controlling all
peripheral macrocells.

This architecture allows Mitel and its customers to produce
right-first-time ASIC MicroController systems efficiently,
meeting the stringent cost and time-to-market demands of
today’s embedded control market.

The functional blocks in this example are described in detail
below.

The Internal Module Bus

The existence of an internal standard bus is a key element of
Mitel's success in quickly developing new embedded
MicroController cores to meet specific demands. By
adhering to rigorous bus communication standards for both
master and slave modules, it is possible to re-use any
module in a new design without modifications to resolve
timing, or other inter-module conflicts.

It is not only modules that can be re-used. all the test
programs, characterisation results and software routines,
created the first time a module was used, can also be used
again without modification. This gives an enormous
advantage in time-to-market terms.

The standard bus architecture also simplifies the task of
designing new peripheral functions, when needed, quickly
and with a high right-first-time success rate.

System Services Module

The System Services Module is responsible for all the
administrative tasks associated with the bus, both in normal
operation and for test and diagnostic purposes. It performs
the following functions:

B Bus mode control (RESET, RUN, TEST, etc.)

Bus master arbitration

System address decoding for peripheral functions
Diagnostic broadcast of bus status

External bus master access

Manufacturing test control
B Top-level System Configuration

Bus Interfaces
(Memory/Peripheral Controller and Up-Integration Module)

The Memory/Peripheral Controller (MPC) acts as the main
gateway between the internal and external bus systems of
an embedded MicroController core. The external bus has to
be capable of interfacing both to the multitude of separate
devices which could be used in conjunction with a
MicroController ASIC, and with the logic and memory located
elsewhere on the same chip. This second requirement is
serviced by the Up-Integration Module (UIM).

The MPC provides the following functions:

B Support for 8-, 16- and 32-bit data transfers and memory
widths

B Flexible address interface — providing typically 4
(maximum 7) memory areas, each of 4 Mbytes

B Accesses to memories (ROM, SRAM), and peripherals
(e.g. ADCs, DACs, other communications interfaces)

B Generation of control signals to access external
components (chip-selects, write-enables, output-enables,
etc.)

B Dynamic bus sizing, so that only accesses of the correct
width (i.e. 8-, 16- or 32-bits) are directed to each type of
external component

B Generation of programmable wait-states for accessing
external devices of different speeds

B Generation of programmable stop-wait states, allowing
for the slow turn-off time of some external devices (e.g.
ROM)

B External memory accesses with zero wait-states at up to
the maximum system clock speed, assuming suitable
memory devices are used

B Fly-by DMA operations. Internal -> external, external ->
internal, and external -> external modes are supported

B RAM and ROM swapping after initialisation, so that
interrupt routines and other time-critical software can
operate from fast memory once the system has booted

The simplistic approach to integrating customer functions on-
chip would be simply to connect them to the off-chip address/
data busses, and control signals, from the MPC. However, all
these interconnections would then carry the capacitive
overhead of the bond pads and external loads, and their
performance would be both impaired and variable.

Mitel's UIM consists of multiplexers and tristatable I/O cells
which disconnect on-chip customer logic (when required)
from the external world, thus minimising power consumption
and ensuring that anticipated performance is obtained,
regardless of what else is present on the circuit board. If
desired, these signals can still be transmitted from the
external address and data lines, providing an invaluable
diagnostic tool for the system software developer.

The UIM also allows on-chip ROM to be disabled and
replaced by external ROM, so changes to ROM-based code
can be tried out before new masks are made.

Universal Asynchronous Receiver Transmitter (UART)

The UART provides an asynchronous full-duplex RS232-
type channel, which supports both software and hardware
flow control mechanisms. The Receive and Transmit
channels are double-buffered. Each UART may be polled, or
can use an interrupt scheme for module bus transfers. An
internal Baud-rate generator provides selectable data rates
derived from on- or off-chip sources. Directly-triggered DMA
transfers involving the UART are also possible, without the
need for CPU intervention. Features include:

B Full duplex operation, independent transmit and receive
channels
B 7 or 8-bit serial data length. 1 or 2 stop bits

Even, odd or no parity generation

Internally selectable baud rate generation, derived from
either the system clock or an external clock source

XON/XOFF (s/w) or RTS/CTS (h/w) flow control
Double-buffered transmit and receive channels

Software polling to determine channel status

Optional interrupt generation on transmit channel
becoming empty

Optional interrupt generation on receive channel
becoming full

B Detection of parity, overrun, and framing errors on
receive channel, with optional interrupt generation

B Support for modem signals RTS, CTS and DCD with
edge detection and optional interrupt generation
B Additional signals DTR, DSR and RI also supported

B Digital input filter to improve noise immunity

Interrupt Controller

The ARM7TDMI core accepts two types of interrupt: Normal
(IRQ) and Fast (FIQ). All generated Interrupts can be
switched between types, depending upon the relative
priorities required.

The Interrupt Controller is the central control logic that
assigns priority levels, and handles all interrupt request
signals. External Interrupts can be set for edge or level
sensitivity, and have a polarity option. To minimise interrupt
latency, there is a hard-wired priority scheme covering all
channels and both types; alternatively this can be over-
ridden, and the priority assessment handled in software.

Features include:

B 32 independently controlled interrupt channels

B Hardware priority encoding for FIQ and IRQ interrupts to
indicate the highest priority active channel for each
interrupt type

Generation of either a FIQ or IRQ request
Independent masking of the channel interrupt source
Response to edge-triggered or level-sensitive sources

Sensitivity to both active-low and active-high interrupts

DMA Controller

Two DMA engines are available; these may be configured as
single channels for flyby DMA transfers between off-chip
requestors and either on-chip or off-chip locations, or as a
channel-pair to provide a memory-to-memory DMA capability
between any locations in the memory space. Features
include:

B Maximum transfer rates of 100 MBytes per second
(single addressing), 50 MBytes per second (dual
addressing) at 25 MHz: zero wait-state transactions

32 bit (4 GByte) addressing range: address increment,
decrement and hold

Data transfer sizes of 8, 16, and 32 bits (statically sized)
16 bit (65536 item) maximum transfer count
Transfers can be triggered by software

Maskable level- or edge-sensitive hardware transfer
triggers, with selectable polarity

Maskable hardware transfer acknowledge signals, with
selectable polarity

Block and Packet mode transfers supported
B \Wait-state insertion, when indicated by slow memory
B Auto-initialisation of channels on completion

B Chained DMA transfers supported for scatter-gather
operations

B Fixed channel priority
B Optional bus locking to preventinterruption of DMA
services by other bus masters

B Abort mechanism for illegal access with interrupt
generation and transfer halt.

Timer/Counters

Four independent 32-bit timer/counters, each with an 8-bit
prescaler capability are provided by two Dual Timer/
Counters modules. These are synchronous to the system
clock, and may be polled or set up to generate interrupts on
over-run and auto-reload. The main features of each Timer/
Counter module are:

B Two, independently controlled Timer/Counter elements

B Prescalers to generate a Timer Clock signal from the
system clock

Prescale count of 8 bits

Division ratio selection by software

Multiple Timer/Counter modes:
- countdown to zero

- free running

- reload and count on trigger

- pulse width modulation

Fully software programmable time-out period
B Maskable interrupt on time-out

Power Distribution

Mitel Embedded MicroController ASICs use a grid
methodology for power distribution. This grid, which is
automatically constructed during layout, uses metal layers
one and three for horizontal power rails and metal layer two
for vertical connections. Metal layer four can also be used on
0.35um for vertical connections, in order to increase the
effective gate density of larger chips.

Clock Distribution

Mitel supports a number of clock distribution methodologies,
selected according to the particular design and the CAD
tools being used by the designer. For small designs with a
light clock load, a single, large buffer may be sufficient. For
large designs, with large clock loads, a clock grid or clock
tree is recommended, to avoid metal electromigration in the
clock network. Clock trees can either be synthesised or
manually specified as a clock hierarchy by the designer.
Mitel's clock grid methodology uses up to three stages of
buffering, where each stage drives a grid which feeds the
next stage. The final stage grid is a starting point for routing
to the actual clocked inputs.

Other Embedded MicroController Cores

Mitel is able to produce new Embedded MicroController
cores rapidly, by re-using peripheral blocks from a library
which is continually being extended as new peripherals are
identified. The library contains a number of other functions
which are not used in the earlier example, including:

B Watchdog Timer
- Driven from the system clock
- Programmable primary time-out period, ending in a
processor interrupt

- System RESET is invoked if the watchdog timer is
not re-started within the programmable secondary
timeout period after the interrupt was issued

- An external control signal enables/disables the timer
B Programmable Peripheral Interface

- 8 data lines

- Each line:

- can be individually set, reset or read
- can be defined as input, output or bidirectional

- All lines can be combined to form a byte-wide
parallel port

- Static, Strobed or Interrupt-driven |/O modes
- An interrupt can be generated if any line changes
state, effectively adding up to 8 more external
interrupt sources
B Power Control Module
- Provides individual clock control to all other modules
on the bus, to minimise operational power
consumption
- Initiates a Standby mode, suspending all bus and
module activity until a hardware interrupt is received
- Initiates a Sleep mode for the ARM7TDMI core,
which the remains inactive until an interrupt occurs
B SIM Card Interface
- Serial half duplex port
- Parity generation and checking in hardware:
protocols and timing in software
- Bit timing compliant with ISO 7816-3
- remains inactive until an interrupt is received
B Keypad Scanner

- Supports 6 x 6, 7 x 5 or 8 x 8 matrix keypads, or any
subset of these

Further MicroController ASIC cores are continually being
evaluated and developed in conjunction with customers, to
address particular application needs. Recent examples
include PCI, USB, Global Positioning by Satellite, Digital
Cellular Communications and Digital Imaging.

Unless subject to commercial restrictions, any extra
functions which are developed will be made available to
other developers of Mitel Embedded MicroController ASICs.

Firefly ASIC Design Flow

Phase 1:
Specification

Assess Design
Requirements «

Mitel Inputs

MAP-2TE Board
ARM Toolkit

————————————— - — Mitel Macroscope =T

Training

Phase 2:
Development

Define System
Architecture

Software Emulation

(Model

Application Support

.

Create HDL view
of system

Y

Hardware
Prototyping

Early
Production (................

PN

SIFs
SystemBuilder Cells
Mitel Macroscope

Software -«
Development

Y

HDL wrapped C model

Firefly RTL
Mitel MAP Board

HDL <

simulation

________________ I

Phase 3:) .
Synthesis and Synthesis Y
integration v ROM
U image
> Gate level <
Simulation \

Y

Test vector

Netlist

generation

Phase 4: Track load ¢
Physical data
Design Chip Layout

Phase 5: ¢

Prototype

Manufacture

Fabrication & Test

Firefly ASIC Design Flows are available for both Cadence
(VHDL and/or Verilog) and Mentor (VHDL) systems, both
using Synopsys Logic Synthesis. Typically the designer will
be provided with suitable models of the Embedded
MicroController Core and any other embedded hard-wired
functions, in addition to the appropriate Mitel ASIC libraries
on CD-ROM. These libraries cover both Embedded Arrays
and Standard Cell on both 0.6um and 0.35um processes

With Mitel's library elements, designers will be able to
design, synthesise and validate Firefly ASIC designs (see
ASIC Simulation Design Flow, below), before passing the
netlist data to Mitel for lay-out. The Firefly MicroController

Core is supplied with its own Test-bench, so designers only
need to develop tests for the additional circuitry they have
designed.

After layout by the nearest Mitel Semiconductor Design
Centre, the designer can perform final simulations prior to
prototype Manufacture.

As an alternative to the pure CAE approach, Mitel also
supports a Hardware prototyping Design Flow (see above).
Both flows produce the same end product - a fully-integrated
application specific MicroController.

Hardware Prototyping Designh Approach

Designers often face the contradictory demands of early
proof-of-feasibility of a design, and low ultimate cost for high-
volume applications. The Hardware Prototyping Design
Approach provides a route which allows early validation of
design decisions, but is focused on producing a highly-
integrated end product.

Initially the design may be prototyped for validation purposes
using an FPGA for the application-specific logic, and a
MicroController ASIC development chip from Mitel. Mitel also
offers Prototyping Boards, described later in this Datasheet.

mmEEmmEREEREEREE . EEEEEEEEEEEEEEEEERSEE..
ARM7TDMI | : H H
Interrupt Buartimer | H H o H
Controller Counter || H Application :
N H Specific H
DMA H H Logic H
Controller WARr H H H
External Bus System E E E
Interface Services H H H
: g ommmnmmmmmmmmmmmmmmm————
ARM MicroController FPGA containing

ASIC Development Chip Application Specific Logic

Hardware Prototype System (FPGA)

Once design validation is performed, the FPGA may be
converted to a Mitel ASIC for pilot production in the shortest
possible time frame.

I EEEEEEEEEEEEEEAE R
H ARM7TDMI I H

Hl Interrupt Dual Timer/ | H

| Controller Counter 3 L

H H Application
Howva H Specific

H| Controller | UART I] Logic

u Bus System u

H ' interface sevices |Hl = Hormmmmmooomoooo

ARM MicroController
ASIC Development Chip

Mitel Gate Array containing
Application Specific Logic

Pilot System (Gate Array)

Ultimately the two devices may be up-integrated into one
device so that the required cost targets may be achieved.

ASIC Simulation Design Approach

In many cases, the performance constraints of the system
under design are such that no hardware prototyping strategy
is feasible. The ASIC Simulation Design Approach allows
designers to combine models of the MicroController and of
their own application-specific logic within a software
simulation environment.

ARM7TDMI
Interrupt Dual Timer/
Controller Counter Application
Specific
DMA i

Controller Leg
External Bus System

Interface Services

I

ARM MicroController
Core Functional Model

Functional Block containing
Application Specific Logic

Prototype System (Simulation)

Once the function of the application-specific logic is proven
against the available test cases or test data streams, the
description of the logic may be modified to integrate it closely
with the MicroController ASIC core, taking into account
issues such as bus interfacing and manufacturing test.

ARM7TDMI |
Interrupt Dual Timer/
Controller Counter Application
Specific

DMA Logic
Controller

External Bus System

Interface Services

Functional Block Model, integrating MicroController
and Application Specific Logic

Integrated System (Simulation)
Upon design verification, the application-specific

MicroController ASIC may be fabricated as a single device,
allowing the required cost targets to be achieved.

Both Design Approaches produce the same final Firefly Embedded MicroController ASIC:

Application Specific Logic

ARM7TDMI

Interrupt
Controller

DMA
Controller

‘ UART I

External Bus
Interface

ARM7TDMI Microprocessor

A[31:0]
“ Scan
C
r Control
Address Reglster e
m
P 4 L e
c n l«— DBGRQI
Address t
le— BREAKPTI
b Incrementer e
u r > DBGACK
! | s > ECLK
b > nEXEC
Register Bank u - ISYNC
(31 x 32-bit registers) s -— BL[30]
A (6 status registers) l— APE
L
u I . le— MCLK
— nWAIT
b . > nRW
" py B Instruction | _ g0
s X l<— niRQ
A<:> Multiplier <:> b Decoder |__ :FIQ
u
b le— nRESET
" s & «— ABORT
s — nTRANS
Control — nMREQ
Barrel Logic : ;EZC
Shifter |, ook
! | — nCPI
NS le— CPA
\ 32-bit ALU / l«— CPB
I > nM[4:0]
J l«— TBE
l— TBIT
! j«— HIGHZ
Instruction Pipeline
Write Data Register & Read Data Register
& Thumb Instruction Decoder
nENOUT | nENIN T
DBE D[31:0]

ARM7TDMI Architecture

The ARM7TDMI is a member of the Advanced RISC
Machines (ARM) family of general purpose 32-bit
microprocessors, which offer high performance for very low
power consumption and price.

It is a static design, consuming dynamic power only when the
clock is active. Additional features include a fast multiplier
(32x8bit), debug support, and the 'Thumb’ extension.

'Thumb’ is an additional 16-bit instruction set which is
decompressed into normal 32-bit ARM instructions in real
time by the ARM7TDMI core. It allows cheaper 16-bit
memory to be used for non-critical code segments.

The ARM architecture is based on Reduced Instruction Set
Computer (RISC) principles, and the instruction set and
related decode mechanism are much simpler than those of
microprogrammed Complex Instruction Set Computers. This
simplicity results in a high instruction throughput and
impressive real-time interrupt response from a small and
cost-effective core.

Pipelining is employed so that all parts of the processing and
memory systems can operate continuously. Typically, while
one instruction is being executed, its successor is being
decoded, and a third instruction is being fetched from
memory.

The ARM memory interface has been designed to allow the
performance potential to be realised without incurring high
costs in the memory system. Speed-critical control signals
are pipelined to allow system control functions to be
implemented in standard low-power logic, and these control
signals facilitate the exploitation of the fast local access
modes offered by industry standard dynamic RAMs.

MCLK TCK
ek
TMS
M
Clocks — AT] o
|
ECLK
B —————
« 0TRST
((—aea |t L
TAPSM[3:0] Boundary
| TAPSMIBOL
nFIQ R0 Scan
Interrupts _— —cE .
nTDOEN
| LTDOEN
ISYNC o
— IS —
nRESET 1o
| Tck2
—RESET] SCREGE0
BUSEN o Boundary Scan
—BUSEN
HIGHZ ~— Control Signals
B /AN
BIGEND 0]] ;r;dczasor
nENIN
—neNN
TBIT
nENOUT S Processor
= oA N—
Bus State
ENOUTI
«—DENOUTL]
Controls e
—
APE —
=
ALE
N S—
E DOUT31:0]
TBE N~
— e
= Memory
BUSDIS
- [he Interface
ECAPCLK <
«—ECARCLK]
VDD,
—veo
Power
=
—ss]
(__oeera | nMREQ
BREAKPT e E—
—BREAKPT]
DBGACK | ___nRW
-t |
EXEC MAS[1:0,
B . —
eb EXTERN 1 (P = 5|
ebug R =555 N E—
EXTERNO oo)
—EXTERNOD]
DBGEN nTRANS Memory
—DBGEN] e
RANGEOUTO ABORT Management
B —————— |- ——————
Interface
RANGEOUT1 hOPC
v ew— . .
DBGROI e
e — L —
\ COMMRX PA Coprocessor
D sE— -—
COMMTX s Interface
- . ——

ARM7TDMI Interfaces

Debugging Embedded ARM7TDMI Systems

The ARM7TDMI processor supports ARM's EmbeddedICE
debug methodology. A special 'ICEbreaker’ unit is provided
to store watchpoint/breakpoint information, and to halt
program execution at a specific instruction fetch (breakpoint)
or data access (watchpoint). Register or memory contents
can then be examined, and optionally modified, then
execution can be single-stepped, or allowed to run to the
next break/watchpoint.

Communication with EmbeddedICE is through a JTAG-like
interface. Four scan chains are provided, to:

- test both the ARM7TDMI core and the surrounding
logic

- program the EmbeddedICE breakpoint/iwatchpoint
registers

- debug program execution in the ARM7TDMI

- test another scan chain, typically around the entire
pad ring of the Embedded MicroController device.

EmbeddedICE is non-intrusive, so it supports breakpointing
of ROM-based code. The JTAG interface is typically
controlled by the ARM Software Development Toolkit,
operating on a PC, Sun or HP platform, via ARM Ltd’s
EmbeddedICE interface Unit

Scan Chain 2 Scan Chain 0

RANGEOUTO "

RANGEOUT | =1
EXTERN1 ™9
EXTERNO =i

noPC
nRW
MAS[1:0]]
nTRANS Core All
IMREQ Other

L Signals

A[31:0] - A
I | Scan Chain 1
D3 1:0] L
\A | ‘T ‘
TAP controller ‘
|

T + F F vV Y Y Y

TCK TMS nTRST TDI TDO TAPSM[3:0] IR[3:0] SCREG[3:0]

ICEBreaker

DIN[31:0] I

DOUT[31:0]

.
g
]
£
o
7]
7]
>
om

ARM7TDMI Debug Interface

ARM7TDMI Instruction Set Architecture

The ARM7TDMI processor employs a unique architectural
strategy known as THUMB, which makes it ideally suited to
high-volume applications with memory restrictions, or
applications where high code density is essential.

The THUMB Concept

The key idea behind THUMB is that of a super-reduced
instruction set. Essentially, the ARM7TDMI processor has
two instruction sets. The original ARM 32-bit instruction set is
available, unchanged, but ARM have taken the 36 most
frequently used 32-bit instructions and compressed them to
16 bits, with some restrictions, e.g. fewer accessible
registers and smaller immediate values stored in the
instruction word.

Thumb 16-bit instructions are decoded in hardware without
any loss of processor speed, and are presented to the ALU
as conventional 32-bit instructions for execution.

Two additional instructions switch the processor between
ARM and Thumb modes, whenever the programmer decides
that a change is appropriate.

ARM standard 32-bit instruction set

THUMB 16-bit instruction set

Mnemonic Instruction Action Mnemonic | Instruction Action Lo/Hi register | Condition
operands codes set
ADC Add with carry Rd :=Rn + Op2 + Carry ADC Add with Carry Rd:=Rd+Rs+C Lo Yes
ADD Add Rd :=Rn +Op2 ADD Add Rd:=Rn+Rs Lo/Hi Yes*
AND AND Rd = Rn AND Op2 AND AND Rd := Rd AND Rs Lo Yes
B Branch R15 := address ASR Arithmetic Shift Right Rd:=RdASR Rs Lo Yes
BIC Bit Clear Rd :=Rn AND NOT Op2 B Unconditional branch PC = PC +/- Offset11 Lo
BL Branch with Link R14 := R15, R15 := address Bxx Conditional branch PC = PC +/- Offset8 Lo
BX Branch and Exchange R15 :=Rn, BIC Bit Clear Rd := Rd AND NOT Rs Lo Yes
T bit := Rn[0] .
BL Branch and Link PC = PC +/- Offset
CDP Coprocessor Data Processing (Coprocessor-specific) LR :=PC+2
CMN Compare Negative CPSR flags := Rn + Op2 BX Branch and Exchange PC :=Rs Lo /Hi
CMP Compare CPSR flags := Rn - Op2 CMN Compare Negative Rd +Rs Lo Yes
EOR Exclusive OR Rd = (Rn AND NOT Op2) CMP Compare CPSR flags :=Rd - Rs Lo /Hi Yes
OR (op2 AND NOT Rn)
EOR EOR Rd := Rd EOR Rs Lo Yes
LDC Load coprocessor from memory Coprocessor load . . .
LDMIA Load multiple Stack manipulation (Pop) Lo
LDM Load multiple registers Stack manipulation (Pop) .
LDR Load word Rd32 := [Rb + Immediate5] Lo
LDR Load register from memory Rd := (address))
LDRB Load byte Rd8 := [Rb + Immediate5] Lo
MCR Move CPU register to cRn :=rRn {<op>cRm} .
coprocessor register LDRH Load halfword Rd16 := [Rb + Inmediate5] Lo
MLA Multiply Accumulate Rd = (Rm * Rs) + Rn LsL Logical Shift Left Rd:=Rd <<Rs Lo Yes
MOV Move register or constant Rd :=0p2 LDSB Load sign-extended byte | Rd8 := [Rb + Immediate5] Lo
MRC Move from coprocessor Rn := cRn {<op>cRm} LDSH Load sign-extended half-| Rd16 := [Rb + Immediate5] Lo
register to CPU register word
MRS Move PSR status/flags to Rn := PSR LSR Logical Shift Right Rd:=Rd>>Rs Lo Yes
register MOV Move register Rd := Immediate8 Lo /Hi Yes*
MSR Move register to PSR PSR :=Rm MUL Multiply Rd :=Rs* Rd Lo Yes
status/flags
. MVN Move Negative register | Rd := NOT Rs Lo Yes
MUL Multiply Rd =Rm*Rs
. . NEG Negate Rd:=-Rs Lo Yes
MVN Move negative register Rd := OxFFFFFFFF EOR Op2
ORR OR Rd :=RdORRs Lo Yes
ORR OR Rd := Rn OR Op2
POP Pop registers [SP] ++ := Rlist (LR) Lo
RSB Reverse Subtract Rd =0p2-Rn
} PUSH Push registers Rlist (LR):= [SP]-- Lo
RSC Reverse Subtract with Carry Rd :=0Op2-Rn-1+Carry
) ROR Rotate Right Rd :=Rd ROR Rs Lo Yes
SBC Subtract with Carry Rd :=Rn-0Op2-1+Carry
) SBC Subtract with Carry Rd:=Rd-Rs-NOTC Lo Yes
STC Store coprocessor register to memory address := CRn
. . . STMIA Store Multiple [Rb]++ := Rlist Lo
STM Store Multiple Stack manipulation (Push)
. STR Store word [Rb + Immediate5] := Rd32 Lo
STR Store register to memory <address> := Rd
STRB Store byte [Rb + Immediate5] := Rd8 Lo
suB Subtract Rd :=Rn -0Op2
STRH Store halfword [Rb + Immediate5] := Rd16 Lo
Swi Software Interrupt OS call
X N Swi Software Interrupt OS call
SWP Swap register with memory Rd :=[Rn], [Rn] := Rm
e . suB Subtract Rd := Rd - Immediate8 Lo Yes
TEQ Test bitwise equality CPSR flags := Rn EOR Op2
; TST Test bits CPSR flags :=Rd AND Rs Lo Yes
TST Test bits CPSR flags := Rn AND Op2

The THUMB set's 16-bit instruction length allows it to
approach twice the density of standard ARM code while
retaining most of the ARM’s performance advantage over a
traditional 16-bit processor using 16-bit registers. This is
possible because THUMB code operates on the same 32-bit
register set as ARM code.

THUMB code is able to provide up to 65% of the code size of
ARM, and 160% of the performance of an equivalent ARM
processor connected to a 16-bit memory system.

THUMB’s Advantages

THUMB instructions operate with the standard ARM register
configuration, allowing excellent interoperability between
ARM and THUMB states. Each 16-bit THUMB instruction
has a corresponding 32-bit ARM instruction with the same
effect on the processor model.

10

The major advantage of a 32-bit (ARM) architecture over a
16-bit architecture is its ability to manipulate 32-bit integers
with single instructions, and to address a large address
space efficiently. When processing 32-bit data, a 16-bit
architecture will take at least two instructions to perform the
same task as a single ARM instruction.

However, not all the code in a program will process 32-bit
data (for example, code that performs character string
handling), and some instructions, like Branches, do not
process any data at all.

If a 16-bit architecture only has 16-bit instructions, and a 32-
bit architecture only has 32-bit instructions, then overall the
16-bit architecture will have better code density, and better
than one half the performance of the 32-bit architecture.
Clearly 32-bit performance comes at the cost of code
density.

THUMB breaks this constraint by implementing a 16-bit
instruction length on a 32-bit architecture, making the
processing of 32-bit data efficient with a compact instruction
coding. This provides far better performance than a 16-bit
architecture, with better code density than a 32-bit
architecture.

THUMB also has a major advantage over other 32-bit
architectures with 16-bit instructions. This is the ability to
switch back to full ARM code and execute at full speed. Thus
critical loops, for applications such as fast interrupts and
DSP algorithms, can be coded using the full ARM instruction
set, and linked with THUMB code. The overhead of switching
from THUMB code to ARM code is folded into sub-routine
entry time. Various portions of a system can be optimised for
speed or for code density by switching between THUMB and
ARM execution as appropriate.

Operating Modes

ARM7TDMI supports seven modes of operation. Mode
changes may be made under software control, or may be
brought about by external interrupts or exception processing.
Most application programs will execute in User mode. The
non-user modes - known as privileged modes - are entered
in order to service interrupts or exceptions, or to access
protected resources.

ARM7TDMI Operating Modes

User (usr) The normal ARM program execution state

FlQ (fig) Designed to support a data transfer or channel
process

IRQ (irg) Used for general-purpose interrupt handling

Supervisor Protected mode for the operating system

(svc)

Abort mode Entered after a data or instruction prefetch abort

(abt)

System (sys) A privileged user mode for the operating system

Undefined Entered when an undefined instruction is exe-

(und) cuted

Register Sets

In ARM (32-bit) state, 16 general registers and one or two
status registers are visible at any one time. In privileged
(non-User) modes, mode-specific banked registers are
switched in. The table below shows which registers are
available in each mode: the banked registers are indicated
by a triangle.

ARM State General Registers and Program Counter

System & User FlQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS
R R R R R R
R7 R7 R7 R7 R7 R7
RS R8_fiq RS RS RS RS
RY R9_fiq RY RY RY RY
R10 R10_fiq R10 R10 R10 R10
R11 R11_fiq R11 R11 R11 R11
R12 R12_fiq R12 R12 R12 R12
R13 R13_fiq R13_svc R13_abt R13_irq R13_und
R14 R14_fiq R14_svc R14_abt R14_irq R14_und
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

ARM State Program Status Registers

| CPSR | | CPSR | | CPSR | | CPSR | | CPSR | | CPSR |

'\SPSRJq | BSPSR;VC | Bspsmam | I\SPSRJrq | Bspsmund |

B= banked register

Key:
CPSRCurrent Program Status register

The THUMB (16-bit) state register set is a subset of the ARM
state set. The programmer has direct access to eight general
registers, RO-R7, as well as the Program Counter (PC), a
stack pointer register (SP), a link register (LR), and the
CPSR. There are banked Stack Pointers, Link Registers and
Saved Program Status Registers (SPSRs) for each
privileged mode. This is shown below:

THUMB State General Registers and Program Counter

System & User Fla Supervisor Abort RQ pijndefined
RO RO RO RO RO R1
R2
R1 R1 R1 R1 R1
s
R2 R2 R2 R2 R2 i
R3 R3 R3 R3 R3 RS
R
R4 R4 R4 R4 R4
s
RS RS RS RS RS
R R R R R
PC
R7 R7 R7 R7 R7
sP SP_fig SP_sve SP_abt SP_irq SP_und
LR LR_fiq LR_sve LR_abt LR_irg LR_und
PC PC PC PC PC

THUMB State Program Status Registers

| CPSR | CPSR CPSR CPSR CPSR CPSR

SPSR_fig SPSR_svec SPSR_abt SPSR_irg SPSR_und

B= banked register

11

Software Development and Debug

Both software and hardware development tools are available
to aid the designer in the development and debugging of the
target application. The Software Development Toolkit
contains an industry-standard optimising ‘C’ compiler and
Assembler for both ARM and Thumb code, a linker, and a
Windows-based debugger.

ARM
Project manager

Floating point
library W

Camine Dx._

Executable
Profiling
information

AN SI standard
Library

Supplied simple
memory model

ARMulator

Software model of
target hardware

ARM
Debuaaer

remote

Evaluation
board

EmbeddedICE
interface

Target hardware

Software Development Toolkit - Tool Chain

The task of creating the project environment within which the
user can write, maintain and build program code is
significantly eased by the inclusion of the ARM Project
Manager, an integrated development environment.

The Project Manager provides the mechanisms required to
configure and build complex Embedded Applications. The
interdependencies between source files in a project are
automatically detected at build time, removing the need to
write complex make files.

=) ARM Project Manager - C:\ARM210\Examples\Dhiy\dhry_1.c (dhry.api.D ebug)

Eile Edit Yiew Project Tools Window Help

EEEEEE] B EEE P EEEE])
[l C:\ARMZ1 0\E xamples\Dhiy\dhiy. api B C:\ARMZ10\Examples\Dhiyhdhry 1.c (dhiy.api.Debug) P[] E3
& -8 AFM Executable Image = -
=] & Debug
Y Sources *
------------ V] dhy le * "DHRYSTONE" Benchmark
¥[8 dh_2c *
) InchudedFiles *
S Dbiects * Versiem: €. Version 2.1
& SubProjects *
& Libraries x File: dhry_1.c (part 2 of 3)
Y Image =
& Miscellanea % Date: May 25, 1988
=] I Release *
D Souces * Ruthor: Reinhold P. Weicker
& IncludedFies *
$p Dbisots
Y SubProjects *
----- Y Libraries
Y Image #include "dhry.h"
Y Miseellanea
* Global Variahles: x/
. v
Ll | 4 | o
—————— Build Debug variant ------
i Information: "¢ \ARM210\Examples\Dhryi\dhry.apj"; Project is up te date
4 | 5
Bl A
For Help, press F1 | Line:1 | [[

Software Development Toolkit - Project Manager Interface

12

The ARM Windows Debugger is a source-level debugger,
with optional Source/Assembler interleaving. 'C’ and
Assembler may be single-stepped and breakpointed.
Breakpoints may be simple or compound, occurring only on
a specific set of events. Variables and memory may be
watched during execution. Modifying or setting memory and
variables to specific values can trigger breakpoints.

The debugger can interface to a software simulation
environment, such as the ARMulator software emulator, and
also to a target-resident debug monitor via a serial port or
other communications channel.

. ARM Debugger - C:\ARM 21 0\Examples\D hiy\D ebug\dhry. axf [_[5]
File Edt Search View Execute Options Window Help

2| DleE|mE B Fwwiek] @=egE el

[=I Command Window !EI- i Disassembly Window: 08000 (1) =1ofx|
[ARMsd Command Interface D=010002000 nop R
Debug: g0 nop
[Ereakpoint #1 ot #dhry_l:nain. line 78/2 of dh oxbboDan08 bl 0x8040
78 { 0=0000800c Bl __main
Debug | |p=00008010 swi Oxl1 -
4 ¥[[o=0o008014 andeq rl10.r0.x0, ror x0
Z ln=non0sn1s andeq r0.r0.rd.lsl #6
_ng,,,w.m,,w,ndw dhiy_1.c !Ell 0=n000801c andeq rG.r0.r8.ror #24
p=00008020 andeq r2.r0.r0 ror 13 2
Tser_Time. i3] £ y
£loat Microseconds. 4
gg Dhrystones_Per_Sec |ATFEE o) =]
i % end of verisbles for time meas_ |} o g =
23 2 0=0045552
hain () I3 0=4000001c
74 xnnnns ra 000000000
75 = O=fffffff
6 0=00014c3c
/% main progran. corresponds to I
77 a /% Main and Proc_0 in the Ada ve [[F7 0x00012270 -
7-;_ One_Fifty Int_l_Loc il i 2l
60 REG One_Fifty Int”2Loc [!EII
61 One_Fifty Int_3_loc
a2 REG char Ch_Tndex: |[sRMulator 2.0 (Feb & 1997]
83 Enuncration Enun_Loc: |[ARM7TDMI. Mencry map, 15.0HHz. 4Ghb. Dunmy MMU,
o1 Str_30 Str_I_lec Denon ‘SWIS] FPE, Profiler. Tracer. Little e
i Str_30 Str_2 loc |Memory
i FEG int Fun_Index 00000000 7efsssse, 32-Bit. wr. wait states
a7 REG int NunBex_Of
oe
EE] s# Initializations %/
H B =
[y wilan S | o
For Help, press F1 [ARMulate | [[

Software Development Toolkit - Debugger Interface

Alternatively, the debugger may connect directly to the
processor via the EmbeddedICE JTAG Debugger interface
unit in the target hardware environment. For MicroController
ASICs where the board-level hardware and interface
software are still being developed, this represents a
particularly attractive debug option. The correct operation of
the ARM7TDMI processor and other on-chip resources may
be verified prior to the availability of debugged boards and
software.

Silicon Scan Chains

Control Signals

Host PC

Running ARM
Toolkit

EmbeddedICE
Interface

ARM7TDMI

—1 [
[¥vv
EmbeddedICE TAP Controller
Interface Unit TAP Core
JTAG
Interface

ARM7TDMI MicroController JTAG Debug Interface

Software Interface Functions

In order to facilitate the writing of driver code for the
individual interfaces of the MicroController ASIC cores, a
library of low-level Software Interface Functions (SIFs) is
provided, which may be called explicitly from 'C’ code. The
SIFs are a collection of robust library routines to interface to
the macrocells of the ARM MicroController ASIC cores. The
library is built on a layered approach, as is common in the
industry (e.g. ISO OSI Reference model) and it incorporates
recognized principles of software engineering, such as
abstraction, high cohesion and low coupling. The use of the
Software Interface Functions allows the firmware writer to
produce interface code more quickly, and with reduced risk
of error. Additionally, the use of the functions leads to better
documented and hence more easily maintained code. The
optimising compiler will eliminate any redundancy in the
resultant code.

There are many advantages of using the SIFs.

Bl They provide the user with an easy and efficient way of
using the Firefly MicroController cores.

B They provide automatic bounds checking.

B They are written in ANSI’C’ and are directly callable from
assembly language.

B They provide efficient code for benchmarking.
Bl They provide automatic address checking.

B The function names are self documenting and
unambiguous.

B They have a low number of parameters and are not data
dependent i.e. they do not have to operate on input data
to decide the actions to perform.

B They provide the user with a memory-to-speed trade-off
choice at compile time, by electing to use either #define
Macros or callable Functions.

In summary the advantages of using the SIFs are that the
code can be developed using the 'C’ functions to exploit the
potential of type, access and bounds checking. The selected
files may then be compiled with either in-line macros or
functions, as the user requires for the final application.

Documentation

Each Firefly MicroController ASIC core is fully documented.
The documentation is provided in the form of a Firefly Core
Design Manual. For each macrofunction, the manual
includes:

B an Interface Specification

B an Operation Description

B a Programmer’s Model

B a Timing Specification, where applicable

In addition, Mitel provides an ARM7TDMI Core Manual,
which describes in detail the architecture of the core, the

Programmers Model and both the 32- and 16-bit Instruction
Sets.

Design Support

Mitel Semiconductor offers fully flexible design support,
allowing customers a wide choice of design interfaces. Each
customer design is supported fully by an Applications
Engineering group, with CAE support from the local Mitel
ASIC Design Centre.

In addition, a series of '"How-To’ guides is available to ease
the process of learning how to integrate a Firefly
MicroController core into an ASIC design.

The process incorporates a Design Audit procedure to verify
compliance with the customer's specification, and to ensure
manufacturability. The procedure includes three design
reviews, held at key stages of the design process to control
device performance and timescales.

Design Review 1: Held at the beginning of the design cycle,
to check and agree on performance, packaging, specification
and design time scales

Design Review 2: Held after logic simulation, but prior to
layout, to ensure satisfactory functionality, gross timing
performance and fault coverage

Design Review 3: Held after layout and post-layout
simulation to provide verification of satisfactory performance
after the insertion of actual track loads. This is the final check
of all device specifications prior to prototype manufacture.

Design Kits

Firefly MicroController ASIC products are offered within the
standard ASIC design flows supported by Mitel
Semiconductor.

Features of design kits include:
B ’'How-To’ design guides
B full top-down design flow support

B behavioural and timing models of the MicroController
core

B Synopsys Design Compiler timing model

B sign-off simulation by the customer on Cadence Verilog,
Mentor Quicksim, and Synopsys VSS

B support for floorplanning

B full test patterns (95% coverage) for both serial scan and
parallel access to the ARM7TDMI processor

B direct routes to layout and test

Software Development Tools

Mitel supplies the ARM Software Development Toolkit to
support development of application code for Firefly ASICs.
This toolkit, which runs on PC, Sun and HP platforms,
includes:

B Project Management Tools

B 'C’ Compilers for both Instruction Sets
B Assemblers for both Instruction Sets
B Linker

13

B Debugger
B A’C Emulation Model of the ARM7TDMI Core
B ARM’s AngeIT"’I Debug Monitor

The Debugger operates equally well with a software model
or real hardware as the target. Mitel develops a 'C’ model for
each of the Firefly MicroController Cores, which extends the
power of the Toolkit when using a software target. This
power is further extended by Mitel's unique 'Macroscope’
Tool, which gives the user full visibility of the status of all
internal registers in all the MicroController Core’s
peripherals.

Hardware Development Support

Mitel provides powerful support for the Hardware Prototyping
design approach (described earlier) by offering development
chips and development boards. For example, the Firefly MF1
Core is supported by the MF1 Developer Chip, which forms
the basis of the Mitel MAP-2TE Hardware Prototyping Board.
MAP-2TE is a basic, expandable system, containing:

B the MF1 Developer Chip (MVT905001)
B a 512kByte block of SRAM
B sockets for adding a second 512kByte SRAM block
H the AngeIT"’I

ROM

a JTAG-type connector to support ARM'’s
EmbeddedICE™ debug methodology

a RS232-level UART interface

B a 96-way Expansion Socket, for attaching customer-
specific prototype circuitry

Debug Monitor, pre-loaded into a Flash

B a 25MHz system clock oscillator, with the option of using
an external clock

B manual Reset and Interrupt buttons

The board is supplied with the full library of MF1 Core SIFs,
together with full documentation on the use of SIFs and a set
of code examples.

The combination of MAP-2TE, the customer’s expansion
board, Mitel's SIF library and the ARM Software Toolkit
allows application code to be developed and debugged
efficiently, using the AngeIT"’I debug monitor.

To exploit the added facilities offered by EmbeddedICE, an
EmbeddedICE Interface unit is required. This is also
available from Mitel.

Please consult Mitel for information on MAP Kits to support
other Firefly Cores.

14

Experience

Mitel Semiconductor has been an ARM semiconductor
partner since 1992. As such, the company has developed
significant expertise in the integration and manufacture of
ARM-based designs. The company has worked closely with
Advanced RISC Machines to develop reuse methodologies
and internal bus standards for ARM-based designs. The
company also manufactures ARM-based standard product
MicroControllers, in addition to ARM MicroController ASICs
developed for key customers in markets such as cellular
communications, networking and mass-storage.

This experience in both the hardware and the software
aspects of ARM-based design and integration is available
through the regional design centres of Mitel Semiconductor,
with additional support provided from a dedicated
applications engineering team.

Manufacturing

MicroController ASICs are manufactured in Mitel
Semiconductor’'s state-of-the-art facility near Plymouth,
England. This facility is purpose-built, and is equipped with
the latest automated technology for 8-inch wafer processing.
This equipment utilises mini-environments, together with the
use of SMIF boxes, to achieve ultra-clean processing
conditions. Computer-Aided Manufacturing ensures
production efficiency. In addition to the world class wafer
fabrication facility, the probe and final test areas are
equipped with the latest analog and digital testers. Mitel
Semiconductor is committed to continuous investment to
provide state-of-the-art CMOS ASICs.

A qualified second source for this silicon process is also
available.

Availability

The Mitel Firefly ASIC capability is available for design today
on both 0.6um and 0.35um processes, and in both
Embedded Array and Standard Cell technologies.

Notes

15

ASIC SYSTEMS DESIGN CENTRES

UNITED KINGDOM: Swindon, Tel: (01793) 518000 Fax: (01793) 518411. UNITED STATES OF AMERICA: San Jose, CA, Tel: (408) 451-4700 Fax: (408) 451-4710.
Irvine, CA, Tel: (714) 852-3900 Fax: (714) 852-3910. FRANCE: Les Ulis Cedex, Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07. JAPAN: Tokyo, Tel: (03) 5276-5501
Fax: (03) 5276-5510.

@ The ARM7TDMI core is manufactured under licence from Advanced RISC Machines Ltd

ARM and the ARM logo are trademarks of Advanced RISC Machines Ltd

SEMICONDUCTDR © Advanced RISC Machines Ltd 1993-1998

CUSTOMER SERVICE CENTRES
FRANCE & BENELUX Les Ulis Cedex B SOUTH EAST ASIA Singapore

W Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07 B Tel:((65) 3336193 Fax: (65) 333 6192
B JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510 B SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
B KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933 B TAIWAN, ROC Taipei Tel: 886 2 25461260 Fax: 886 2 27190260
B NORTH AMERICA Scotts Valley, USA B UK, EIRE, DENMARK, FINLAND & NORWAY
B Tel: (408) 438 2900 Fax: (408) 438 5576/6231 B Swindon Tel: (01793) 518000 Fax: (01793) 518582

These are supported by Agents and Distibutors in major countries worldwide.

© Mitel 1998 Publication No. DS4874 Issue No. 1.0 September 1998 TECHNICAL DOCUMENTATION - NOT FOR RESALE.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor

form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied
is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification,

design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such
methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment
using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any

16

